AUTHOR	Galamtos, Eva C.
titie	Engineering and High Technology Manpower Shortages: The Connection With Mathematics.
InSTITOTION	Southern Regional Education Board, Atlanta, Ga.
POB DATE	80
NOTE	22 p .
AVAIIABLE FRCM	Southern Regicnal Education Board, 130 Sixth St., N.W., Atlanta, GA 30313 (\$2.00).
EDRS PRICE	MF01/PC01 Plus Postage.
DESCRIPTORS	College School Cooperation: *Ecucational Demand:
	Educational Economics: Employment Projections:
	Engineering: *Engineering Education: *Higher
	Education: *Labor Problems: Mathematics: *Mathematic
	Education: Political Issues: *Social Problem
	Technolcgy

ABSTRACT
Current and projected manpower shortages in high technology areas are examined with respect to the region served by the Southern Regional Education Board (SREB). Many of the problems associated with the shortfall cf trained individuals are viewed as connected to decreasing numbers of students taking advanced mathematics, and a lack of concerted efforts and strategies to reverse this trend. Sections fresented include: (1) wanted: High Technclogy Graduates: (2) Limited Supply of High Technology Graduates: (3) Constraint on Supply: High School Mathematics: (4) जomen and Minorities: A Potential Source: (5) Mathematical Achievement: A General Decline: (6) The Shortage of Mathemarics Teachers: (7) Supply and Lemand Projections, Southern Fegion: (B) Mathematics and Computer Science: (9) The Outlook for Engineers: (10) How High Can Engineering Enrollments Gc: (11) Supply and Demand for Engineers in the South: (12) Engineering Doctorates Sharpiy Down: (13) New Priorities and Changing Demends for High Techrulogy Graduates: and (14) Conclusions. (MP)

[^0]US DEPARTMENTOF HEGLTH EDUCATIUN A WELFARE HATIONAL INSTITUTE OF EDUCATION
HIS DOCUMENT HAS BEEN REPRO DUCEO EXACTLY AS TECFIVEO FROM THE PERSON OR ORGAVIZATIONQRIGIN ATING IT POINTS OF IEW QR OPINIONS STATEO OO NOT NELESSARILY REPRE SENT OFFICIAL NATIONAL INSTITUTE
EQUCATION POSITION OR POLICY

PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY B. Schultz

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC).'

Engineering and High Technology Manpower Shortages: The Connection with Mathematics

Eva C. Galambos

130 Sixth Street, N.W. - Atlanta, Georgia 30313 • 1980 • \$2.00

This paper was reviewed by Dr. Paul Doigan. General Electric Company, Schenectady. New York: by Dr. W. Denney Freeston. Jr. , associate dean. College of Engineering. Georgia Institute of Technology: and by Dr. William F. Atchison. professor. Computer Science. University of Maryland. The author wishes to acknowledge the valuable suggestions each made. The author. however. bears full responsibility for the opinions expressed in this paper.

Highlights

 the hard seiencess is expected in the region in thin decarde.

- This high technology manower shortall will be accentated hy changing national prioritich taward increased research and devehpment, greater capital expenditurs to improwe indaverial productivity, and an emphasis on national delimese.
- Athough there will mot he enough new entrants into high lechnology fiedes. tahor marke imbalame maty be partly adjusted through upward and oceupational mobility af permons with related stills. Still, since these persons tow will be in high demand, the total evonomy may he impeded by the werall lack of pervonnel with the reguisite skills for a highly technical wciely.
- Further increases in engineering enrollments are probably not whe experted in the inmadiate fulure. The traditional source of engineering enrollments-yong white males-will he reduced by the demographic facts. Therefore, maintaining the present leve of enrollments, or increasing the fif engine ring collegen can expand to accommodate the increase), would depend on higher participation rates by women and minorities. These groups in the past have avorided the tield.
- An increase of degrees in engineering and wher high tehnotngy field depend la a comsiderahle extent upongreater stress on mathematics in the high schools. A rigurous four-year high schoot mathematice sequence is the usual prerequisite for enrollment in the hightechnology fields. Yet a limited proportion of today"s high school students have this preparation.
- Greater participation in high school mathematics as wedl as the general improvement of mathematical achicvement is hindered at the present time by the serious shortage of mathematics teachers in sefood districts throughout the region. The declining interest among college students in mathematies education diminishes the hope of any imminent improvement of the shortage of mathematice teathers.

Foreword

Colleges and universities are giving increaned attention to the realitien and implications of the new enviromment of the tighties. They are keenty anare of the deelining pool of college-age youth and of threats to the adequaty of higher eductational funding. But they alsor realize that a deereane in the number of college graduates may lead to shortages in some types of professional manponer before the end of the decade.

These conditions may lempr some campuses to lower admission standards, not only to maintain enrollment levels but abon to respond to societys manpower needs. Yet, the sarerifice of quality implied by redueing college entrance standards is th the inswer to meeting manpower needs. A preferred approath is for all levels of education to work toward producing a greater number of youth gualified to complete a rigorous college curriculum. By not sacrificing standards, the focus is then on strengehening high sehoot instruction and also on providing remedial studies for inadequately prepared eollege freshmen.

Today, more than ever, higher education leaders are aware of their dependenee on the elementary and secondary' school systems to prepare candidates for college study. This report singles out one area of this interdependency, namely, the relationship hetween the adequacy of high sthool mathenatics instruction to the eapaeity of higher education to meet society's need for skilled, high technology manpower.

SREB recognizes a growing puhlic eoneern for a more effective relationship between our sthools and higher education. Currently, SREB is directing attention toward problems of teacher preparation and certification. The present report illustrates the fate that content of the secondary curriculum, as well as high sehool prerequisites for the various avenues of postsecondary education, deserve added attention by all educational sectors.

Winfred L. Godwin
President

Table of Contents

Page

Wanted: High Technology Graduates
Limited Supply of High Technology Ganduates
Constraint on Supply: High School Mathematics
Women and Minorities: A Potential Source?
Mathematical Achievement: A General Decline
The Shortage of Mathematics Teachers
Supply and Demand Projections, Southern Region
Mathematics and Computer Science
The Outlook for Engineers
How High Can Engineering Enrollments Go'?
Supply and Demand for Engineers in the South
Engineering Doctorates Sharply Down
New Priorities and Changing Demands for High Technology Graduates

Conclusions

Wanted: High Technology Graduates

During the past several years, suply of high kebology graduates has not kep up with demand. timployer demand for eollege gradaber in the fieds of engineering, computer seience and mathematien. and the physiad setences has been very strong. But despite strong increases in the absolute number af enrolbments in compuler science and engine ering, the corrent percentage of total college graduates in the highly lechnical fieds remains below what was in the carly Sixties. In mathematies the he has atmally heon a decrease in the absolute number of graduates. What do these contrass bode for the future? Will graduates in the highly technieal lieds be in shore supply through the deeade, will there be a reversal of this tight situation, and is there possibly even a danger of overexpansion'?

During the latter Seventies, demand for engine ering graduates was phenomenal. Throughout the nation and in the Southern region. placement officers reported that on-cimpus recruitment ativity showed engineering ranking among the highest demand disciplines. The high sabaries engineering graduates command bear out the strong matket. Athough in other fieds examined by the College Platement Council. salary offers to new baciabateates declined in real dollars during the 197()s. for engineers they rose. The strong market has held up despite an increase to 52.600 engineering batecalatureates in the United States in 1979 -the highest annual number sinee the 1950 s .

Similarly. the market has been strong for computer seience gratuates. Like engineers. they are in the position of choosing among employment offers. while their peers in the liberal arts scramble to lind suitable jobs. Furthermore complaints are heing heard inereasingly from school districts unable to locate mathematics and " ience teachers. Competing opportunities in business and industry for people with these technical "'ills a.e siphoning off the limited number of graduates.

In other technical fields, such as physics and chemistry, the gob market has also been strong. Even at the doctoral level. where there was an oversupply of physicists in the mid-Seventies, conditions have improved. Fewer Ph.D.s are staying on as "post-docs"-positions sometimes serving as a "holding pattern" for ductorates who cannot lind employment. The American Institute of Physics Employment Survey of 1978 Graduates reports that only 2 percent of those surveyed at all degree levels were still looking for work six months after graduation.

In sum, the market for highly technical graduates is booming. The Deutsch. Shea and Evans High Technology Recruitment Index. a nationally known indicator of the market for engineers and related perconel, rose to 144 in 1979-the highest point the Inde x^{2} has reached except during 1966 (see Figure I). Despite the recession, the Index continued to rise early in 1980, although it finally reflected the weakening economy with a deeline by the spring months.

Limited Supply of High Technology Graduates

[^1]'T:ABIII: I

	Batciolmuram		Mander	
	United Stinsu	Sunulin	Umiter Stater	himill
106.3-6.1	15.64	15.14	this' ${ }^{\prime \prime}$	11.71
11971.71	11.7	11.2	12. ${ }^{\text {ch }}$	11.1
1976.77	111.11	19.4	K. ${ }^{\text {H }}$	7.11
1977-7K	10.7	11.1	4.1	7.1

 repurted by NCLES.

What is still more alarming is the fact that in the region the ahmolute number of degres low these combined fieds actually dropped between 1971 and 1977-a period during which the foral number of hathelor's degrees awarded rose 16 pereent. This drop is ateomed for by the mathematien fied. wen when computer science is included (see Table 2). The 1977-78 degree data do show a slight turnaround in student avoidance of the highly technical liedds, with engine ring and computer scienee acounting for the overall gain. Mathematies, however, continues whe a loser-both relatively and absolutely-cen in combination with computer science. The American Council of Education's 1979 repuri on the plans of Freshmen regarding the college majors does indicate a small shift to the highly teelnical tieds, buth mationally and in the South.
The decreasing proportion of degrees in highly teehnical areas is not totally unexpected during a period when college enrollments have been rapidly expanding. These are the fiedds that in the past attrated young. male, high achievers. This group, for the nost part, wits already well represented in the eollege population before the huge enrollment expansion of the late Sixties and early Seventies. The "new" enollege students who contributed to the boom in higher education-women, minorities, and older students-have heen less inclined to choose the fields in question.

TABIIE 2

Proportion of Total Baccalaureate Degrees in High Technology Fields Seleeted Years

	1963-64		1970-71		1976-77		1977-78	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
South								
Computer Science	-	-	596	0.3\%	1.676	1.5		1.3
Mathematics	5.450	4.6\%	6.723	3.1	3.656	1.5	3.215 4.551	1.3 5.8
Engineering	8.238	6.9	11.646	5.4	12.197	4.9	14.551	25
Physical Sciences	4.251	3.6	7.989	2.3	5.987	2.4	6,271	
United States							7.224	0.8
Computer Science	18.649	4.1	2.388 24.912	2.2	6.426 14.295	1.5	12,701	1.4
Mathematics Engineering	18.649 35.354	4.1	50.357	5.9	49.667	5.4	56.009	6.0
Physical Sciences	17.507	3.8	21.548	2.5	22,609	2.4	23.175	2.4

Source: Degree Outpur reports, based on HEGIS data. Southern Regional Education Board. The "engineering" field, as reported by the HEGIS system. includes engineering technology baccalaureates and is not comparable to the "engineering" category as reported by the American Association of Enginecring Societies.

Co

There are va college gridu: scientists. and college fields I of mathematic college freshn mathematics p sufficient supp completion of

atics

chnology physical chnology seguence ic. While is schos: , Thus. mphasize

 but that a turnarmund applatred to be laking place."

Women and Minorities: A Potential Source?

The absolute number of high sehoul graduates in 1985 will be 15 perem lower than a decade carlier, Thus, to produce any substintial incteases in high lechmolagy manpower, the potential poull will have to extend beyond its raditional eomstituency of white mates. In the past, women and minorities have been very poorly represented in engineering and in the other fiedds under review here. Only 5.5 pereent ol the nation's engineers in 1978 were members of a minarity. Amomg these, blacks constituted an even lower proportion-1 percent. Wonien in 1978 atecounted for less than 3 pereent of employed engineers. ${ }^{7}$

John S. Robotom, executive director of the Texas Alliance for Minorities in Engineering. estimates that only 10 percent of the annual high school graduates in Texas have completed trigonomery. "Fewer yet only 1.700 students. have taken physics, the one science on which engineering is based. The Texas Education Agency (TEA) hats no figures on the numbers of minority students who have taken these essential courses, but those of us in engineering education know that the number is infinitesimal. ${ }^{*}$.

Mr. Robotom's concern aver minority participation in high school mathematies sequences stems from his awareness of denngraphic trends. He points ot the TEA projections that in the late 1990) 60 percent of the state's K-12 population will be black or Hispanic, as compared to the current proportion of 40 percent. Yet minority students rarely consider technical careers. In Texas, he projects. ". . a a severe overall dectinc' in engineering production commencing in the next few years; clearly, we must bring our minority population into the mainstrean of technical careers-not as a response to federal mandate or from a humane impulse to aid the less fortunate, but to sustain the highly technical society which we have built here in Texas. ${ }^{\prime}$

Much has been written about "nath anxiety and avoidance" among women. The subject becomes more important. now that women constitute over half of total college enroliments. Is there any innate difference to account for their math avoidance and their consequent disproportionately small representation in technical fields?

Current research finds mathematics achievement at least as high for females as for males into the lower high sehool grades. By the 12th grade, however, males surpass females in both the number of math courses they have taken and in their achievement levels. When only those males and fenales are compared who have taken an equal number of math courses, males perform somewhat better than fenales in the problem-solving and application areas. However, the two sexes perform at par on the purely conputational skills."

The relative failure among females to persist as "math takers" has been explained as stemming from environmental factors. Girls are said to have less confidence; they perceive less parental, teacher, and peer

 "Mmen ":

 the + persent five seam cantier.

Mathematical Achievement: A General Decline

Inereasing the proportion of high sehood stadents who take rigoroms math sepuences is only part of the eoneern ower the current status of mathematies edueation in the schools. The generad dee line in mathemation abhe vement, as evidenced by Scholastic Aptitude Test (SAT') seores and other assessments. in a wortisome trend to a society that seeks to maintain a lead in a technological era.

The deeline of SAT math scores has heen thoroughly analyed. By 1979. the I(1-year drop in math SATs in the South was + percent. from an average of $+55^{6} 6+4+$. 14 A bonger perspective is avaibable for national average SAT seores-from 1952 to 1980 --with verbal seores down 11 percent and math seores down 6 pereent. from $+4+10+66$. The average seoves for the region are lower than those for the mation.)

The analysis of the decline in the national average SAT' seores by the Advisory Panel that studied this issule concladed that the change in the composition of students aking SAT's aceounted for most of the drop during the 1960s. ${ }^{\text {It }}$ In 1964 , only one-third of the high sehool graduates were entering college, while by 1970 the proportion had risen to approximately one-hall. However. the eontinted drop in SAT seores sille 1970 cannot be explained simnly by the changing composition of test takers. Instead. the proliferation of electives in high school, deelining aleademie standards, television viewing, and the ehanging role of the family are all thought to contribute to the poorer results.

The National Assessment of Educational Progress (NAEP), a recurring testing program of 9. 13, and 17 year olds. also found a drop in mathematieal seores in the 1978 tests. compared with 1973. The scores for all three age groups declined, although the greatest decline was for the oldest group. The most pronounced drop in scores was for problem-solving portions. Computational skills, such as adding, subtracting, and multiplying, were mastered. But on such a relatively simple task as figuring the per unit cost of an electricity bill. only 10 pereent of the 17 year olds were able to comply. Only 37 pereent of this age group was able to correctly estimate on a multiple choice question that " 2 " is the whole number most nearly equaling $12 / 13+7 / 8$. On the tests in 1973 and 1978. the students in the Southeastern region performed below the national level. ${ }^{15}$

The conpetency-based movement in public education has been blamed for the decline in problem-solving abilities. Rote procedures and simple word problems at the end of a chapter that repeat, rather than

The Shortage of'Mathematies Teachers

 mathormation kimber

 teaching lied of on the "tigh"" emol of the scale."

 fir the entire region. But 7.5 (1) were prepared to teach physical chlacation.

The general orersupply of teachers in recent years probalhly eontributed to the lack of awateness about the impending shortage in the mathematies area. Rigid teather piy plans, that do not differentiate sabaries by speciaties. generally cannot respond to shotages in any one discipline. With good opportunities in business and govermment. where math majors can adapt their skills to computer programming. research. and analysis, school hytems are at a competitive disadvantage.
If a greater number of teathers prepared to teath mathematies is one answer towarel reversing the achievement deelines of these students, enrollment in college mathematies colurses does mot provide evidence of an imminent turnaround. The latest report on undergraduate mathematics emrollments eompares 1976 data with those for $1971 .^{19}$ While total enrollments in four-year institutions during this period rose 11 pereent. math enrollments were up only 8 percent. What emollment increases did oceur were concentrated in the lower division eourses and in computer secience and statistics courses. Upper division mathemation courses (calculus and above) were down 32 percent. These are the courses commonly taken hy math. physical science, and engineering majors, whose enrollments in the 1970) did not keep pate with college enrollments generally. Enrollment in "mathematics for elementary teachers" deelined 2t percent.

Increases in /ower division courses are explained in part by the declining mathematieal preparation among entering freshmen. In the two-year colleges. the same trends were evident-1976 enrollments compared to 1971 showed shifts 10 remedial arithmetic and high sehool algehra, with slower growth in the pre-cilleulus and calculus courses.

Supply and Demand Projections, Southern Region

A comparison of openings versus graduates in mathematios and computer science and in engine ering indicates that the Southern region will experience shortages in these fields. Projections of occupational openings whieh reflee employment growth, as well as replacement neds, are contained in reports of the State Employment Security Agencies (E.SAs). These projections ate developed by the F.SAs on the basis of underying assumptions eatablished by the United States Bureall of Labor Statistics. Among these assumptions are the suppositions that no long-lasting energy shortages or technologitad changes will drantically affee the economy. To the extent that such assumptions may not refleet the athal state of future affairs, the demand for high technology graduates may differ from the projected openings. Still, these projections provide a point of departure for estimating the number of graduates who will he needed annually in the region to fill joh openings over the next five years.

Mathematics and Coni uter Sciences

Athough teaching has traditionally been it areas offer good opportunities. Mathematicia diverse as developing insuratice rates to track. teachers from the schools listed a cartographers. a math teacher out of the classroom. At the prese systems analysis offer widespread opportunitio applications

With the exception of efementary and high sche I teaching of mathematics. fior which comploter seicnce majors wholack education eredentials are not eligit \therefore many mathematics and computer science majors tend (1) he interchangeable in the joh marke. Theis 1 makes sense to consider projected openting for mathematics and eomputer specialists logether. for (wo) fields combined.

A comparison of supply versus projected openie: for mathematics and computer science specialists in the South is shown in Figure 2.

According to the projections of the ESA in average annual openings to account for growth a? computer specialists. It is assumed that these ope an 1978. in the South, only 5.146 baccabareate deg re less than the number of openings.

This supply ol graduates includes those mathe 1 . \sin m teachingtertificates. If the latter are presumed as egre supply is diminished by perhaps as much as one - r against projected openings. It is no wonder that se 1 , prepared to teach gravitate toward non-teaching johs. these graduates can still command higher salaries as Nachers.

The booming joh marke for computer speciatiss. comathing firm noting that, in 1979. employers hired 5 year. For systems programmers and systems analysts. respectively. ${ }^{20}$ Yel national totals for baccalaureates in coms 10) percent annually in the 198()$_{\text {s. }}{ }^{21}$

The shortage of personnel in computer science is borne, y Hamblen's recent assessment. He coneludes annual needs for manpower at the hatecataureate leve than five to one. * The deficit at the masterss level is shown as : one Even in the event of gross inaceuracy in assumptions and data. such ratios indicate a severe pros. 》 a sweiely which may he largely dependent on sophisticated atomation to pull itself out of the prodt ity .admp.2

The one exception to the rosy outhook for mathematies majors is a ie doctoral level. The academic market has been the major employment sector for such persons in the pa hut a recent study projects that new academic hires will dectine to perhaps as low as 8 percent of the 1970 sel during the next deeade. ${ }^{3}$

The Outlook for Engineers

In the past. supply and demand for engineers have often been out of syne. Enrolln. Is and the number of graduates expanded in response to rising demand and high salaries, overshot the mark. d were then caught in a downward swing of the economy. By the time enrollments and graduates respond 'o the diminished market, the denand was once again on the upswing, outstripping supply. Figure ! illusi as this stuation with the Deutseh. Shea and Evans Index and the gyrations in numbers of engineering aduates at the baccalaureate level.

[^2]x

The drop in demand during the late 1960s (as NASA and defense spending were cut) was not mirrored in the trough of degee production until the mid-Seventies. By then. demand was once again on the rise. The current large enrollment expansion in the engineering schools raises the spectre of another boom-bust cycle which could be in the offing.

Unemployment rates for engineers, which in recent years have been negligible, and certainly fower than for other piofessional-technical manpower, substantiate the very strong demand for engineers. College graduates in general were hard-hit in the recession of the mid-Seventies. But the National Science Foundation (NSF) follow-up surveys of 1974 and 1976 graduates show unemployment rates two years after graduation for bacealatureate engineers at only 2.9 percent and 0.6 percent, respectively. These rates are one-third of the rates shown for all graduates covered by NSF surveys. ${ }^{24}$

The impact of the mid-Seventies recession on the High Techology Recruimem Index, as seen in Figure I, was less severe than the declines of the late 196()s when the United States economy was shifting towards emphasis on social services rather than space and research and development spending. Even then, when the plight of laid-off aerospace and space program engineers attracted great attention, the unemployment rate of engineers was still only in the 2 percent range. These layoffs accounted for the one instance in the last decade when the unemployment rate of engineers was higher than that for all professional-technical workers. ${ }^{25}$ During the spring of 1980 , when the current recession took hold. the demand for engineering baccalaureates held up very well, despite the increased number of graduates in 1980.

How High Can Engineering Enrollments Go?

Engineering enrollments in the United States grew substantially in the late 1970s. These increases resulted because of the strong job market for engineers, as well as relaxation of student distrust of technology and "big business" that had prevailed earlier. By 1979, junior-year enrollment, as shown in Figure 3, had risen 80 percent above the low point in 1973. These junior-year enrollments, which reflect transfers into engineering from other majors as well as the effects of attrition, give an indication of the trend in degree production, and point to further increases above the 52,598 baccalaureates granted in 1979. As shown in Figure 4, the number of baccalaureates in the United States has finally returned to the level of 1950, reversing the sharp decline of the early and mid-Seventies.
Extrapolating the number of degrees from current junior enrollments indicates that some 62,000 to 67,000 engineering baccalaureates will be granted annually in the nation during the Eighties. In addition. some 9,000 baccalaureate degrees in engineering technology* are likely to be earned annually. Does the surge of engineering enrollments presage an even greater expansion of degrees'?
Most observers think it unlikely that this range will be exceeded. Although large numbers of students continue to seek admission to engineering schools, state schools, now at peak capacity, see no way to further expansion, given the climate of governmental fiscal stringeney. Some colleges of engineering have already raised entrance requirements to cope with the surge of applicants. Institutional rigidities make it very difficult to shift resources, especially faculty, from declining higher education fields to expanding ones. Some private institutions are not yet at full capacity of engineering enrollments, but it remains to be seen whether unmet demands for admission to engineering programs will shift to the private sector, where costs are higher.
The surge of admissions may be self-limiting. The major pool from which engineering students are drawn-18 to 21 year olds-is declining. Therefore, a continuation of the high volume of engineering applications would have to come by way of a higher proportion of students choosing engineering to offset the absolute decline in the total pool. This increase has occurred, as shown in Table 3: freshman engineering enrollments stood at 8.4 percent of undergraduate first-year enrollments in four-year colleges in 1978-already much higher than the 4.8 percent proportion of 1973 . It is questionable whether there is any considerable potential for this proportion to rise further, given the constraints of adequate high school preparation discussed earlier.

[^3]
Supply and Demand for Engineers in the South

Despite recent increases in engineering graduates in the 14 SREB states, it is unlikely that demand will be met. The supply is composed ol hateabatreate graduates in engineering and in engineering technology. The growth of engincering enrollments amd degrees in the Southern region has paralleled the national patlem. In 1979. 12.685 bacealaureates in enginering were granted in the South, plus 1.986 in engine ering lechnology. This represents a 20 percent increase over 1476. This total will probably he exceeded during the next several years, as recent enrollment increases are reflected in graduation totals. Howerer, it is unlikely that such growth will he sustamed when the demographic drop takes hold.

From this supply of graduating seniors in any one sear a reduction most be allowed to account for engine ering students who choose to go into sone ocenpation other than engineering, as, for example. management. Entimate at the national level indicate that eventually 80 to 85 percent of the graduates. including those who pursuc fitl-tille graduate sudies. enter the profersion ${ }^{-2}$ For the region thi would reduce the total annual supply of new entrants to approximately 13.000 .

Engineering Full-Time Enrollments, United States 1950-1979

Figure 3
Source: American Association of Engineering Societies, Engineering Manpower Bulletin, March 1980

TABILE 3
Engineering Einrollments As Part of Total Enrollments
Fall 1967-1979

	Full-Time Undergraduate Enginerring as Percent of Full-Time Undergriduatle Enrollment. 4.Year Institutions	Fresbman Engineering as Percent of First Year Enrollment. +-Year Institutions
1967	7.4\%	7.8\%
1968	0.4	7.2
1969	5.7	6.7
1970	5.6	6.4
1971	5.0	5.3
1972	4.7	4.9
197.3	+. 5	4.8
1974	4.8	5.6
1975	5.3	0.5
1976	5.9	7.3
1977	6.5	7.8
1978	7.1	8.4
1979	7.7 (preliminary)	N.A.

Sources: Engineering Manpower Commission. Manpower Bulletin Number 51. and National Center for Education Statistics. Announcemens of Fall Enrollment in Higher Education. and Projections 1985-86, and preliminary tables. Projections 19:87-88.

On the demand side, which is expressed in terms of average annual openings, there are the following components: openings to account for growth and retirements of engineers ($13,200^{*}$) and for engineering technologists ($3.300^{* *}$), and openings to account for transfers out of the profession. Aceording to national estimates. ${ }^{27}$ perhaps 3 to 4 percent of the engineering work force transfers out of engineering annually, thus creating additional job openings. Engineers promoted to managentent responsibilities are an example of such transfers. Applying a 3.5 percent transfer rate to the engineers employed in the region in 1978 yields 11,400 additional openings to replace transfers. With these, the total number of annual openings is 28,000 .
To some extent transfers out of engineering are oftset by transfers into the profession from other jobs. For example, job stifts by computer specialists, chemists, physicists, and promoted engineering teehnologists nay till openings for engineers in the normal eourse of oecupational mobility. Yet, since such transfers are from high technology fields, some of which may also face manpower shortages, the overall supply of such technical people would only be shifted, without making a contribution to overall balance. Thus, the extent to which transfers into engineering openings may serve to balance what would otherwise be a serious nanpower inbabance is indeterminate.
An additional uncertainty must be considered. Engineering has been one of the most popular fields in attracting foreign students. In 1978. 6.7 percent of baccalaureates in engineering were granted to foreign students. The proportion for advanced degrees was much higher-over one-third at the doetoral level. Thus, sone part of the engineering graduates represents manpower supply for other nations. These losses are somewhat offset by immigration of foreign engineers. However, this flow has been restricted since 1973. when the United States Departnent of Labor removed engineers from the shortage classification.

[^4]Taken together, as shown in Figure 5, these various factors indicate that the region will probably experience a shortage of engineers in the next decade. The most promising possibility for balancing supply and demand appears to be the upgrading of employed engineering technologists to fill engineering needs. However, the balancing of the market for engineers through shifts of employed persons from other high technology oceupations, which may also experience shortages, will not solve the overall deticits of high technology manpower.

Engineering Lroctorates Sharply Down

The professional literature and other media are beginning to detect impending shortages of engineering faculty. The explosion of total undergraduate engineering enrollments (up 82 percent in the 197.3-79 period) has put pressure on faculties in the college of engineering. in the early stages, the enrollment expansion was accommodated by excess resources not fully utilized when engineering became unpopular as the Vietnam period closed. But eventually this growith necessitated an expansion of faculties.

Ironically, just as denand for engineering faculties began to grow, the production of doctorates declined sharply. From a peak of 3.691 doctorates in engineering for the nation granted in 1970, the number fell in

1978 to only 2.440 (427 in the South). Exacerbating the decline is the high and growing percentage of foreign students anong engineering doctorates. who would ordinarily be expected to return to their own countries. In 1978, over one-third of the engineering doterates were earned by foreign students, thus diminishing the Anerican supply to some 1.600 .

Graduate enrollments in engine ering have been declining relative to undergraduate enrollments: in 1973. the number of graduate engineering students was 18 percent of the undergraduate engineering population: in 1979. graduate students constituted only 12 percent. Under highly competitive recruitment conditions (and therefore high salaries), young baccalaureate engineers have reduced incentives to pursue graduate studies The lure of immediate employment is reflected in the declining proporion of students at the doctoral level. In 1972, there was one new American doctorate in engineering for every 12 American baciabateates graduated four years carlier. By 1978. there was one for every 23.2x Engineering colleges are increasingly concemed about the prospect of having to rely on foreign-born faculty to staff their programs.

In contrast to other disciplines, only 35 percent of the total stock of engineering dotorates was employed by the acadenic sector in 1977, as compared to 57 percent for doctorates in all sciences and engineering. ${ }^{2}$ Industry and government research and development are heavily dependent on engineering doctorates. If this overall pattern is any guide, only about 600 new doctorates earned by American citizens are available to the acadenic sector. One recent estimate of new hires of engineering faculties (at all degree levels) through the early Eighties vastly exceeds this number, although it shows supply and demand as being in better balance by the mid-Eighties. ${ }^{31}$

New Priorities and Changing Demands for High Technology Graduates

The impending shortages of high technology graduates detailed above may be greater than shown in the preceding analysis. The demand projections that are used are based on a continuation of the existing national priorities. But some of these priorities are now being reappraised and, if changed, might increase considerably the demand for engineers and related manpower.

The current national preoccupation over the need to increase productivity as the long-run solution for improvement of U.S. competition in foreign markets bodes well for technical manpower. Productivity improvement is usually considered as related to investment in research and development and modernized capital investments. These investments require engineers and other technical personnel. Athough oupput per worker in U.S. manufacturing still exceeds that of other industrial nations, the U.S. rate of growth in this productivity measure in the last decade has lagged behind improvements in eompeting economies.

Research and development (R \& D), which are generally thought to play an important role in stimulating productivity, have languished in recent years. In constant dollars, total R \& D expenditures in the United States gres by 50 percent during the Sixties, but declined through the mid-Seventies, and barely showed a gain by the end of the decade. There is growing conviction, as by the Conference Board, that in order to improve economic growth in this sountry. R \& D expenditures in real dollars will have to rise. especially in view of the fact that United States R \& D expenditures now constitute a slightly lower share of Gross National Product than in 1970, while the proportion has risen in Japan, West Germany, and the Soviet Union. ${ }^{31}$

Another factor that prevailed during the Seventies, but that may change in the coming decade, relates to the proportion of engineers relative to other scientific manpower employed. In the mid-Sixties, there were two employed engineers for every employed scientist.* By 1978, this ratio had changed to almost parity. ${ }^{32}$ Also. although the absolute number of employed engineers has grown steadily, it has not kept pace with the growth rate of the labor force. During the 1970s the annual growth rate of engineering employment wats only a quarter of that for the entire work force, and one-tenth of that for scientists.**, ${ }^{3}$ In private industry, which employs almost two-thirds of all scientists and engineers, there has been a shift in recent years to nontechnical resources. There is concern now that this relative decline in the highly technical component of the work force may be a contributing factor to the decline in U.S. productivity.

[^5]The national purpose of deflecting energy dependence from sil of other sources ereater a demand for lechnical manpower. Ironically. even the atmomohile industry the hardest hit sector of American manufacturing in the current tumaround-will ned engineers to redesign its products fior the new energe situation. This same need to redenign in oher indostries, and to develop alternate energy wates. will require an expanded supply of technieal manpower. Also. detense spending, which corretate with the employment of engine ers, appears to be on the upwing in response to uncertain forefg developments.
 ustally cannot be predicted. Yet there are indications that some developing tedonologies are on the verge of pervasise uses and thus will ereate expanded demand for high techonogey manower. The powibility of fueling tramsportation with liquid hadrogen. the aceeleated use of industrial mobots. the adaptations of satellite communications for busines and comsmer uses and the commeriad application of genetic enginering are examber of such petental innovations.

Supply and Demand of Engineers in the South Will Transfers Fill the Gap?

Figure 5

Conclusions

The signs in terms of demand are fatirly clear: even with a comtintation of past trends, the demand for engineers. computer and mathematics specialists, and other high techonolog manower will exceed supply. After a period of national priorities which deemphasized R \& D expenditures and defense spendinge the United States economy appears to be on the threshold of renewed focus on these ateas. This shift in priorities will plate further demands on the avaibatitity of highty tedmical skills. Will manpower shortages be a limiting factor'?

The fundamental constraint on a rapid expansion of high techonology manower centers on the number of high sehool students with adequate preparation in mathematies wembark on "hard seience" curricula when they enter college. Yet the shortage of mathematies teachers currently plaguing school distriets will timit the ratte of improvement that may be expected in mathematies achievement in the sehools. The decline of enrollments and degrees in eollege mathematies holds forth no promise of any imminent response bward solving the shortage of mathematies teathers. In short, withou deliberate action at ath educational levels. if present trend are allowed or continue their own apparent course, then a serious shortage of high technology manpower may be in the offing.

In conjunction with greater stress on mathematies in the high schools and colleges, it will be important to increase participation in the high technology fields among high achievers in those groups that in the past have shied away from these subjects. With the deelining number of college-ige students, it will be very difficult to produce more engineers by relying only on the traditional entrants on the fiede-white mates. Efforts binvolve more women and minoritien in the high techonology areas are justified not only on the basis of equity but atho from the standpoint of societal economie necessity. Improved eounseling in the high sehouls is needed to convince more stadents to take rigorotis mathematies seguences and thereby to secure uptions for pursuit of high techonology carecrs.

As part of a strategy to address supply shortages, rigidities that restrict marke responses need attention. For example, the currens shortage of mathematies ceachers in the schools would be redued if school districts could pay higher salaries to teachers in fields where prospective applicants are lured away to other jobs with higher sataries. At the college level. the shortage of engineering faculties results to some extent from the high salaries that baccataureates now command in the job marke The incentives to purste graduate study and on prepare for an atademic career in engineering have been too low wo produce enough Ph.D.s in engineering. A measure introduced by Congressman Don Fuqua. Forida. in the le80 Congressional session to fund Ph. D). traineeships for American engine ring students is a sign that the need for such incentives is gaining recognition. The inability of colleges on shift funds to expanding departments. wheh as engineering and computer science. from other departments with less demand is another rigidity that impedes adjustment on changing conditions.

Greater attention to cuality offerings and increased participation in high school mathematies is warramed not only because of high technotogy minpower demands but also to meet societal needs. There has been a general uproar in recent years about the inability of most high school graduates to compose a cohlerent paragraph. The inability of a major portion of young people to solve simple computational problems that relate to everyday life is appalling. The unemployment problems of disadvantaged youths who can find no niche in an increasingly technolngical economy stem to a large extent from their tack of fundamental skills in mathematics and English.

The American tendeney to swing widely in one or the other direction, whether this be in wholesale adoptions of a new educational theory or doubling the number of medieal sehond graduates in a little more than a deeade, has often amazed friendly foreign observers. The Sputnik reation was rapid and effeetive. culminating in Americins landing on the moon: There is no reason to believe that onee this shortage of high techoology manpower becomes generally perceived. it will not once again be possible, via erash methods. to ntee the needs. In that case there is the further likelihod of overreation. A more gradual but determined anticipatory strategy of strengthened preparation in mathematies at the high school level, which afonost certainly will produce greater college participation in the hard sciences and engineering in response to marke demand. is the prefered alternative. Such a strategy will avoid overexpansion in the high technology fields, and will achieve a greater stability for meeting long-run needs.

Footnotes

3. National Center for Eiducation Statistics. Bulletion 79-228 (Washington. D.C.. 1979).

 mathemation cournes were required for graduation. Yet, only 7 pereent of those districts had such a fow requirement in de sucial sciences. National
 108(0). p. 21.
 Requiremems (New York: Engineering Manpower Commission. 1979). pp. 92-95.
7. Scientific Manpower Commission. Propessional Women and Minorities (W'arhington. D. C. I, pp. 137 and 4.4.1.
 mimeographed.
9. Jane Armbtrong, (1). ©if.. p. 16.
 Journal. Spring 1977, p. 167.
11. Angela Stont. 'Can Math Anxiety Be Conquered?' Change Magazine, Janary 1977. p. 40 .
 1977. p. 96.
13. Data supplied by the College Board. Atlanta, Ceorgia.
14. Advisory Panel on the Scholastic Aptitude Test Score Declince On Further Examination (New York: College Entrance Examination Buard. 1977).
 Stalč, 1979).
 U.S. Housc of Representatives. Ninety-Sixth Congress. ()etober 23. 1979, pp. 19 and 23.

 American Council on Edacation. February 198(1), p. 10.
 Conference Board of Mathematical Sciences, 1976).
20. Reported by Fox-Norris Personat Comsulants in Mampower Comments. November 1979. p. 7.
 P.4.3.
22. John W. Hamblen. "Computer Manpower: The Supply and Demand Crisis." Data Mambermem, May IGso, p. 24.
23. Charlote V. Kuh. Mahematicians in Actelemia: 1975-2\%O) (Washington. D.C.: Conference Board of the Mathematical Sciences. 198(I). p. 75.
24. National Seience Foundation. "Employment Opportunities for Science-Engincering (iraduates Show Recent fmprovement." Mondic. September/()etober 1979. back cover.
25. National Seience Buard. Seiche Indicators, 1978 (Washington. D.C.. 1979), p. 227
26. Daniel E. Hecker. "Engincering Manpower Projections, 1980-1990: Fact or Fiction?' in Medsuring ant Forectaing Einsinedrins Persamel Requiremems. Engincering Manpower Commission (New York. 1979), p. 23.
27. Ibid. p. 21.
28. Eugenc Chesson. "The Future Shortage of Faculty: A Crisis in Enginecring." Eingintering Eiducarion. April 1980, p. 733.

30. Charlote V. Kuh. "Aging Fields: Projections of New Hires and Young Paculty Ration for Broad Science and Engineering Fields. 1976 (o 2000." in The Demend for New Fifwhy in Science and Engincering (Washington. D).C.: National Academy of Seiences, 1980), p. 193.
31 National Seience Board, op. cif., pp. 140. 156. and 171.
32. National Science Foundation. "Employment of Scientists and Engineers Declined in Some Fields Between 1976-78." Mosatic. January/February 1980. back cover.
33. National Science Board, op. cil. . pp. 222 and 112.

16

[^0]:
 Reproductions supplied by EDRS are the best that can be made

[^1]: Degree production has not kept pace with this strong demand for high technology graduates. As shown in Table l. the proportion of college students choosing such fields has declined in recent years. For both the nation and the region, the proportion of baccalaureates with degrees in engineering, mathematics, computer science, and physical sciences combined was one-third lower in 1977-78 than in 1963-64. At the master's level, this decline is even more marked-the proportion is less than half.

[^2]: * Hamblen recognises the large production of computer persomed by ino-year college programs and by proprietary schools. and concludes that the foh market for such graduates is balanced the deficits al the batecalaureate and higher degree levels exist despite the huge ontputs at the lower levels.

[^3]: * The engineering technology programs do not include the same stress on the fundamentals of science. math, and technology as do the traditional engineering programs. They are designed to provide manpower for middle level management jobs, with stress on the production process rather than the design, planning, and administrative functions. The content of the bachelor of enginecring program stresses creativity towards new technology, while the technology programs are more concerned with the continuous functioning of existing technologies.

[^4]: * The reports of the ESAs of the 14 Southern states indicate 13.200 average annual openings for enginecrs to 1985 to account for growth and replacements. Replacement openings account for deaths and retirements but not transfers into other oceupations.
 ** The reports of the ESAs of the 14 Southern states indicate 16.700 average annual openings for engineering technicians to 1985 . On the assumption that 20 pereent of these openings are for individuals with a college degree. 3.30) openings are included in these comparisons of denand for baccalaureate engineers.

[^5]: * "Scientist" in this context includes social scientists.
 ** Excluding soetial scientists. in this case.

